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ABSTRACT

This supplementary material contains some additional details regarding the fractal dimension measure, the simulation set-up,
the anisotropy and asphericity of crumpled damaged graphene sheets, the contribution of newly formed covalent bonds and
the derivation of the theoretical model presented in the paper.

Fractal dimension
In order to determine the fractal dimension systematically and consistently, in the case of the sand-box method, we have to
determine first the power-law range for each DGM separately. A least-squares fit to the data is then applied and the resulting
exponents are averaged over all DGM realizations.
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Figure S1. Typical example of the fitting used to obtain the fractal dimension with the sand-box method. Here, we adopt aRg,
with a = 0.19, and Rg as appropriate values for the lower and upper threshold, respectively. The dashed green lines delineate
the thresholds of the scaling region. The fractal dimension for this particular case is 2.71±0.03 and corresponds to a graphene
sheet with p = 0.28.

In Fig. S2 we show the largest sphere used by the sand-box method. The structure is between the flat and the crumpled state.
We clearly see that the DGM is still flat with some ripples and the spheres of the sand-box method contain regions where there
are no atoms. On the contrary, in Fig. S3 we see that the sphere is completely contained in the DGM.
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Figure S2. DGM at p = 0.16. The green points represent carbon atoms, the blue points hydrogen atoms and the red point the
center of mass. The radius of the sphere corresponds to the radius of gyration.

Figure S3. DGM at p = 0.28. The green points represent carbon atoms, the blue points hydrogen atoms and the red point the
center of mass. The radius of the sphere corresponds to the radius of gyration and covers the isotropic core of the structure.
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Figure S4. Fractal dimension computed with Eq. (3) (ensemble method) for sheets of different initial sizes ranging from 24 to
60 with NCIs.

Ensemble method
We provide further evidence that the crumpled DGM is fractal using an additional method, which we will call the ensemble
method. It is based on the relation between the radius of gyration Rg and the mass M of the DGM as expressed by Eq. (3).
Different system sizes are required for this method. Small system sizes have a very small isotropic core and are thus not
appropriate for measuring the fractal dimension. In contrast, large system sizes would produce accurate results but at a very
high computational cost. Therefore we focus on intermediate system sizes in the range of 24−60 Å. We observe that the fractal
dimension increases in region II as it does with the sand-box method (see Fig. S4). However, the plateau obtained with the
sand-box method (seen in region III of Fig. 4) is more pronounced than with the ensemble-method seen in Fig. S4.

Cooling process and fractal dimension
From Fig. S5 we see that as we decrease the temperature of the samples we converge to the fractal dimension dF .

Computational details
All the parameters used in the simulation have been summarized on Table 1. The initial temperature Ti has been chosen to be
800 K, because it is low enough to keep covalent bonds, avoiding that some atoms would detach from the DGM. However,
it is sufficiently high for achieving a fast equilibration process and helps the DGM to explore a broader part of the phase
space with configurations that require a high kinetic energy for overcoming some possible local minima configurations. Note
also that the initially constructed configuration is not an energetically favourable configuration and a high temperature (and
thus high velocity of the atoms) helps to equilibrate faster towards a more natural conformation described by the potential.
Subsequently, we cool down the structure gradually using a temperature step size of ∆1

T in the temperature interval T1 and ∆2
T

in the temperature interval T2 (see Figure S6). The higher the temperature steps size, the longer it takes for the simulation to
achieve the new equilibrium. However, the smaller the temperature step size, the more intervals between 800 K and 0 K we
need. We found that ∆1

T = 5 K is a good compromise. We defined the second interval T2 in order to achieve a better precision in
the last 25 K. The amount of time-steps required for equilibration strongly depends on the system size. Furthermore, for DGM,
the equilibration process is dominated by the carbon atoms, due to their higher mass mc compared to the hydrogen atoms. The
hydrogen atoms play a minor role in the equilibration process. Therefore, we have chosen the equilibration time (∆1

t , ∆2
t ) in

each temperature interval to be proportional to the number of carbon atoms (Nc) contained in the DGM. The pre-factors have
been determined empirically based on the energy evolution. Once we achieve an equilibrium, the energy end temperature
fluctuates around the desired value and the velocity of each atom is determined by a Maxwell-Boltzmann distribution. Note that
also the free parameter Q in the Nosé-Hoover thermostat determines the coupling between the heat reservoir and the DGM,
thus influencing also the temperature fluctuations. This parameter is usually found empirically, based on the fact that a too high
value of Q leads to a poor temperature control and for Q→ ∞ it even leads to the micro-canonical ensemble (NVE) without
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Figure S5. Convergence of the fractal dimension during the cooling process computed with the sand-box method for different
vacancy densities p. The arrow is in direction of the cooling process towards 0 K. The dashed blue line indicates the fractal
dimension after thermalisation, i.e. dF = 2.71±0.02.

any temperature control. On the other hand, too small values might induce high-frequency temperature oscillations. In our
study we want to produce a structure based on hydrocarbon molecules, where the underlying lattice is hexagonal. Therefore, a
natural choice of the initial bond-distance bi

cc would be close to a stable known configuration, in this case a structure close to
the one of graphene. During the simulation, the bond-lengths adjust dynamically in order to minimize the total energy and
are not fixed parameters of the simulations. Therefore, the precise value of the initial bond-length is not relevant, as long as
it is in a suitable range where we have stable covalent bonds between the atoms. In order to be on the safe side, we choose
them to coincide with the minimum energy distance predicted for a 100 Å x 100 Å graphene sheet, which is 1.40±0.02 Å as
shown in the Figure S7. Indeed, it is matching with the values obtained from many numerical and experimental results? (the
average bond-length in experimentally grown graphene is found to be 1.42 Å). Note that this argument can be applied to the
carbon-hydrogen bonds. We choose an initial bond-length of 1 Å, which is not far away from the equilibrium bond-length
between carbon and hydrogen atoms. Note that we could have also started with a bond-length of 1.38 Å or 1.42 Å and this
would not have made any difference after reaching thermal equilibrium (We relaxed a graphene sheet with initial bond-length
of 1.35 Å and achieved the same equilibrium bond-length mentioned above). However, if we would start with a completely
different bond-length for a honeycomb lattice, let’s say 2 Å, then the initial configuration will recombine towards a completely
different structure or even to amorphous carbon. This process will only be initially dominated by van der Waals forces, since
this distance is too large for the covalent bond interaction in carbon. Even though this set-up might lead to interesting results, it
is not the scope of this research.

Anisotropy and asphericity
The eigenvalues of the gyration tensor are also useful for computing several shape descriptors. Shape descriptors of particular
interest are the relative shape anisotropy κ2 and asphericity b (see Fig. S8) . The former is a measure for anisotropy and
can reach values between 0 and 1. The value 0 occurs when all particles are spherically symmetric and thus the structure is
completely isotropic, 0.25 occurs when the particles lie on a plane, and 1 occurs when all points lie on a line. We observe that
κ2 reaches a value of 0.25 for p = 0 and decreases for higher values of p, providing evidence that the DGM is more isotropic
for large values of p. The asphericity b, which is the second shape descriptor considered, is a quantity that is 0 for particles that
are spherically symmetric. We observe that the asphericity is also decreasing as a function of p with a turning point in region II,
which is the region where the DGM crumples.

Contribution from new covalent bonds
In this section we study the evolution of the covalent bonds. It is reasonable to believe that possibly newly-formed covalent
bonds increase the compactness of the structure. It might be also possible that during the evolution, some new covalent bonds
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Figure S6. Temperature evolution of a DGM with p = 0.13 Å. The DGM has 1193 carbon atoms and 543 hydrogen atoms.
We clearly see that after each change of temperature we leave enough time to equilibrate again.

Parameter Description
mc = 12 u Mass in atomic units for carbon atoms
mh = 1 u Mass in atomic units for hydrogen atoms
bi

cc = 1.4 Å Initial bond-length of carbon-carbon bonds
bi

ch = 1.0 Å Initial bond-length of carbon-hydrogen bonds
σcc = 3.4 Å Lennard Jones parameter for carbon carbon interaction
Ct = 2.5σcc Cutoff length for the potential
Nc Carbon atoms
∆t = 0.1 fs Time step
Ti = 800 K Initial temperature
800 K ≥ T1 ≥ 25K Temperature interval 1
25 K ≥ T2 ≥ 0K Temperature interval 2
∆1

T = 25 K Temperature step difference in T1
∆2

T = 5 K Temperature step difference in T2
∆1

t = 57Nc Time steps for each interval T1
∆2

t = 17Nc Time steps for each interval in T2
Q = Nc/65000 Free parameter for the Nosé-Hoover thermostat

Table 1. Complete table with the parameters required to reproduce the molecular dynamics simulation.
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Figure S7. Distribution of the covalent bonds for a relaxed graphene sheet of 100 x 100 Å size. The green line denotes the fit
with mean 1.40 Å and standard deviation of 0.02 Å.
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Figure S8. Relative shape anisotropy κ2 and asphericity b computed with the normalized eigenvalues λn/R2
g.
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Figure S9. Fractal dimension of the modified DGM, where a penalty has been introduced to suppress newly formed covalent
bonds.

are temporarily created. They could play an important role in the crumpling transition.
To address these questions we modified the simulation such that, whenever new covalent bonds are formed, a force is

produced that, tries to separate the covalent bonds again. This does not allow the DGM to keep newly-formed covalent bonds.
Figs. S9 and S10 clearly show that the impact of newly formed covalent bonds is negligible. There are some new bonds which
are created, but they disappear again some time steps later.

Theoretical model
An effective theory can be formulated to explain the fractal dimensions obtained from our simulation results. The mass-
size scaling M ∝ R2.3 valid for DGM in absence of NCIs is reminiscent of many other situations including DLA growth,?

aggregating proteins,? crumpled paper,? ensemble average of large groups of proteins,? and DNA in chromosomes,?, ? all of
them satisfying M ∝ R2.5, differing≈ 8% in the scaling exponent. The recurrence of dF for these structures, in spite of chemical
and physical peculiarities, suggests a common underlying origin. In fact, a mean-field phenomenological model using an
entropic elastic energy US = AR2,? and a two-body repulsive energy USA = Bρ2V can explain this scaling. In the last term, ρ is
the average density given by mass/volume= M/V , with V ∝ R3, and consequently, USA = BM2/R3. The entropic energy favours
collapsed configurations of the system, but the second term, due to self-avoidance interactions, favours open, more extended,
configurations of the sheet. Physically, the prefactor A in US is expected to depend on the percentage of vacancies as pz, with
z > 0; that is, the entropy of the sheet increases with the damage level. After minimisation of E =US +USA with respect to R,
the mass-size relation M ∝ R2.5 follows straightforwardly. If NCIs expressed through a modified Lennard-Jones potential are
present, their attractive part that decays as 1/R6 tends to combine with the positive USA term leading to a repulsive potential
that effectively behaves more singularly. Our candidate for this composition of energies is a four-body energy which decays
as UNCI

SA = Cρ4V = CM4/R9. According to this qualitative model, in order to explain the crumpling transition observed in
DGM in the presence of NCI, we conjecture that the relevant energy E of the damaged sheet has the form E = AR2 +CM4/R9,
which after minimisation leads to M ∝ R2.75, in conformity with Fig. 4, i.e. the attractive part of the non-covalent interaction
favours more compact conformations with a greater fractal dimension, and the radius of gyration Rg = (9C/2A)1/11M4/11 is
expected to scale inversely with p (as p−z/11), as suggested by Fig. 2. For completeness, Fig. 4 shows that there is reversibility
between the processes leading to the conformations with fractal dimensions dF = 2.71±0.02 and dF = 2.30±0.05, i.e. with
and without NCIs, respectively. Thus, if the steady-state configuration is initially obtained with NCI, the sudden elimination of
this interaction restores the less compact structure with dF = 2.30, and vice-versa.
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Figure S10. Radius of gyration of the modified DGM, where a penalty has been introduced to suppress newly formed
covalent bonds. Blue and red symbols refer to simulations with all and without non-covalent interactions, respectively.
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